236 research outputs found

    Binding between a Distal C-Terminus Fragment of Cannabinoid Receptor 1 and Arrestin-2

    Get PDF
    Internalization of G-protein coupled receptors is mediated by phosphorylation of the C-terminus, followed by binding with the cytosolic protein arrestin. To explore structural factors that may play a role in internalization of cannabinoid receptor 1 (CB1), we utilize a phosphorylated peptide derived from the distal C-terminus of CB1 (CB15P454-473). Complexes formed between the peptide and human arrestin-2 (wt-arr21-418) were compared to those formed with a truncated arrestin-2 mutant (tr-arr21-382) using isothermal titration calorimetry and nuclear magnetic resonance spectroscopy. The penta-phosphopeptide CB15P454-473 adopts a helix-loop conformation, whether binding to full-length arrestin-2 or its truncated mutant. This structure is similar to that of a hepta-phosphopeptide, mimicking the distal segment of the rhodopsin C-tail (Rh7P330-348), binding to visual arrestin, suggesting that this adopted structure bears functional significance. Isothermal titration calorimetry (ITC) experiments show that the CB15P454-473 peptide binds to tr-arr21-382 with higher affinity than to the full-length wt-arr21-418. As the observed structure of the bound peptides is similar in either case, we attribute the increased affinity to a more exposed binding site on the N-domain of the truncated arrestin construct. The transferred nOe data from the bound phosphopeptides are used to predict a model describing the interaction with arrestin, using the data driven HADDOCK docking program. The truncation of arrestin-2 provides scope for positively charged residues in the polar core of the protein to interact with phosphates present in the loop of the CB15P454-473 peptide

    [beta]-(2-Hydroxyphenyl)ethanolamine hydrochloride [2-amino-1-(2-hydroxyphenyl)ethanol hydrochloride]

    Get PDF
    CsH~2NO2+.C1 -, m.p. 441-449 K (from ethyl acetate), P212~2 l, a = 7.363 (2), b = 21.824 (6), c = 5.790 (2)/~, Z = 4, D x = 1.354, D m = 1.356 Mg m -3 (flotation: CC14-C6H6). The structure was solved by MULTAN. Full-matrix least-squares refinement converged to R = 0.057 for the R configuration and to R = 0.056 for the S configuration (P \u3c 0.05). This is consistent with spontaneous resolution of the title compound, single crystals of which provided optically active aqueous solutions. A partially occupied oxygen site O(1)\u27 is attributed to the oxidation of the alkyl hydroxyl group to a ketone during the data collection. The CI- is hydrogen bonded to H2(N)554, H3(N)555, and 1-t(O2)655 (2.37, 2-19, and 2.10 A). Both O(1) and 0(2) are internally hydrogen bonded [HI(N)...O(1), 2.41 and H(O1)...O(2) = 2.24 A]. Intramolecular hydrogen bonding may account for the unusual pharmacological properties of this compound in which only the N-C(1)-C(2)-O(1) and the O(1)-C(2)- C(3)-C(4) and O(1)-C(2)-C(3)-C(8) torsion angles (-41, -60, +122 ° ) differ significantly from those of other phenylethanolamines

    The conformation of (-)-8α- and (-)-8α-hydroxy-Δ9-tetrahydrocannabinols and their interactions with model membranes.

    Get PDF
    8α- and 8β-Hydroxy-δ9-tetrahydrocannabinols (THC's), two metabolites of the naturally occurring δ9-THC have been shown to possess differences in pharmacological activity. We have studied the conformations of these two compounds, as well as their interactions with model membrane systems and compared them with δ9-THC. The conformational study, carried out in solution and using high resolution NMR indicated that differences in the ring conformations of these two compounds were negligible butthat the 8-hydroxy group of the 8β-OH compound extended approximately 1.4Å higher above the plane of the aromatic ring than in the 8α-OH isomer. This difference could prove significant in the interaction of these molecules with lipid bilayers. We found that both 8α- and 8β-OH analogs affected the melting behavior of hydrated DPPC bilayers including a lowering of the main transition temperature (Tc), a broadening of that transition and the abolishment of the pretransition of DPPC. The effects of the more active compound, 8β-OH-δ9-THC on the model membrane approximated closely those of δ9-THC, while the less active 8α-OH epimer produced different thermotropic changes

    Covalent Inhibitors of Human Monoacylglycerol Lipase: Ligand-Assisted Characterization of the Catalytic Site by Mass Spectrometry and Mutational Analysis

    Get PDF
    SummaryThe active site of recombinant hexa-histidine-tagged human monoacylglycerol lipase (hMGL) is characterized by mass spectrometry using the inhibitors 5-((biphenyl-4-yl)methyl)-N,N-dimethyl-2H-tetrazole-2-carboxamide (AM6701), and N-arachidonylmaleimide (NAM) as probes. Carbamylation of Ser129 by AM6701 in the putative hMGL catalytic triad demonstrates this residue's essential role in catalysis. Partial NAM alkylation of hMGL cysteine residues 215 and/or 249 was sufficient to achieve ∼80% enzyme inhibition. Although Cys215 and/or Cys249 mutations to alanine(s) did not affect hMGL hydrolytic activity as compared with nonmutated hMGL, the C215A displayed heightened NAM sensitivity, whereas the C249A evidenced reduced NAM sensitivity. These data conclusively demonstrate a sulfhydryl-based mechanism for NAM inhibition of hMGL in which Cys249 is of paramount importance. Identification of amino acids critical to the catalytic activity and pharmacological modulation of hMGL informs the design of selective MGL inhibitors as potential drugs

    Cannabinoids Alleviate Experimentally Induced Intestinal Inflammation by Acting at Central and Peripheral Receptors

    Get PDF
    Background and Aims: In an attempt to further investigate the role of cannabinoid (CB) system in the pathogenesis of inflammatory bowel diseases, we employed two recently developed ligands, AM841 (a covalently acting CB agonist) and CB13 (a peripherally-restricted CB agonist) to establish whether central and peripheral CB sites are involved in the anti-inflammatory action in the intestine. Methods and Results: AM841 (0.01, 0.1 and 1 mg/kg, i.p.) significantly decreased inflammation scores in dextran sulfate sodium (DSS)- and 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-treated mice when administered before induction of colitis or as a treatment of existing intestinal inflammation. The effect was absent in CB1, CB2 and CB1/2-deficient mice. A peripherally-restricted agonist CB13 did not alleviate colitis when given i.p. (0.1 mg/kg), but significantly decreased inflammation score after central administration (0.1 mu g/animal). Conclusions: This is the first evidence that central and peripheral CB receptors are responsible for the protective and therapeutic action of cannabinoids in mouse models of colitis. Our observations provide new insight to CB pharmacology and validate the use of novel ligands AM841 and CB13 as potent tools in CB-related research

    Cannabinoids Alleviate Experimentally Induced Intestinal Inflammation by Acting at Central and Peripheral Receptors

    Get PDF
    Background and Aims: In an attempt to further investigate the role of cannabinoid (CB) system in the pathogenesis of inflammatory bowel diseases, we employed two recently developed ligands, AM841 (a covalently acting CB agonist) and CB13 (a peripherally-restricted CB agonist) to establish whether central and peripheral CB sites are involved in the anti-inflammatory action in the intestine. Methods and Results: AM841 (0.01, 0.1 and 1 mg/kg, i.p.) significantly decreased inflammation scores in dextran sulfate sodium (DSS)- and 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-treated mice when administered before induction of colitis or as a treatment of existing intestinal inflammation. The effect was absent in CB1, CB2 and CB1/2-deficient mice. A peripherally-restricted agonist CB13 did not alleviate colitis when given i.p. (0.1 mg/kg), but significantly decreased inflammation score after central administration (0.1 mu g/animal). Conclusions: This is the first evidence that central and peripheral CB receptors are responsible for the protective and therapeutic action of cannabinoids in mouse models of colitis. Our observations provide new insight to CB pharmacology and validate the use of novel ligands AM841 and CB13 as potent tools in CB-related research

    Cellular/Molecular Dual Modulation of Endocannabinoid Transport and Fatty Acid Amide Hydrolase Protects against Excitotoxicity

    Get PDF
    The endocannabinoid system has been suggested to elicit signals that defend against several disease states including excitotoxic brain damage. Besides direct activation with CB 1 receptor agonists, cannabinergic signaling can be modulated through inhibition of endocannabinoid transport and fatty acid amide hydrolase (FAAH), two mechanisms of endocannabinoid inactivation. To test whether the transporter and FAAH can be targeted pharmacologically to modulate survival/repair responses, the transport inhibitor N-(4-hydroxyphenyl)-arachidonamide (AM404) and the FAAH inhibitor palmitylsulfonyl fluoride (AM374) were assessed for protection against excitotoxicity in vitro and in vivo. AM374 and AM404 both enhanced mitogen-activated protein kinase (MAPK) activation in cultured hippocampal slices. Interestingly, combining the distinct inhibitors produced additive effects on CB 1 signaling and associated neuroprotection. After an excitotoxic insult in the slices, infusing the AM374/AM404 combination protected against cytoskeletal damage and synaptic decline, and the protection was similar to that produced by the stable CB 1 agonist AM356 (R-methanandamide). AM374/ AM404 and the agonist also elicited cytoskeletal and synaptic protection in vivo when coinjected with excitotoxin into the dorsal hippocampus. Correspondingly, potentiating endocannabinoid responses with the AM374/AM404 combination prevented behavioral alterations and memory impairment that are characteristic of excitotoxic damage. The protective effects mediated by AM374/AM404 were (1) evident 7 d after insult, (2) correlated with the preservation of CB 1 -linked MAPK signaling, and (3) were blocked by a selective CB 1 antagonist. These results indicate that dual modulation of the endocannabinoid system with AM374/AM404 elicits neuroprotection through the CB 1 receptor. The transporter and FAAH are modulatory sites that may be exploited to enhance cannabinergic signaling for therapeutic purposes

    N-Acylethanolamine Acid Amidase Inhibition Potentiates Morphine Analgesia and Delays the Development of Tolerance

    Get PDF
    Opioids are essential drugs for pain management, although long-term use is accompanied by tolerance, necessitating dose escalation, and dependence. Pharmacological treatments that enhance opioid analgesic effects and/or attenuate the development of tolerance (with a desirable opioid-sparing effect in treating pain) are actively sought. Among them, N-palmitoylethanolamide (PEA), an endogenous lipid neuromodulator with anti-inflammatory and neuroprotective properties, was shown to exert anti-hyperalgesic effects and to delay the emergence of morphine tolerance. A selective augmentation in endogenous PEA levels can be achieved by inhibiting N-acylethanolamine acid amidase (NAAA), one of its primary hydrolyzing enzymes. This study aimed to test the hypothesis that NAAA inhibition, with the novel brain permeable NAAA inhibitor AM11095, modulates morphine’s antinociceptive effects and attenuates the development of morphine tolerance in rats. We tested this hypothesis by measuring the pain threshold to noxious mechanical stimuli and, as a neural correlate, we conducted in vivo electrophysiological recordings from pain-sensitive locus coeruleus (LC) noradrenergic neurons in anesthetized rats. AM11095 dose-dependently (3–30 mg/kg) enhanced the antinociceptive effects of morphine and delayed the development of tolerance to chronic morphine in behaving rats. Consistently, AM11095 enhanced morphine-induced attenuation of the response of LC neurons to foot-shocks and prevented the attenuation of morphine effects following chronic treatment. Behavioral and electrophysiological effects of AM11095 on chronic morphine were paralleled by a decrease in glial activation in the spinal cord, an index of opioid-induced neuroinflammation. NAAA inhibition might represent a potential novel therapeutic approach to increase the analgesic effects of opioids and delay the development of tolerance
    corecore